

Ce document a été mis en ligne par l'organisme FormaV®

Toute reproduction, représentation ou diffusion, même partielle, sans autorisation préalable, est strictement interdite.

CORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

CORRIGÉ / BARÈME

GDP

P1. Abandon du traitement (10 points)

P1.1. Usage agricole: engrais minéraux, épandages de déjections animales. Rejets d'eaux résiduaires urbaines et/ou industrielles.

P1.2. Toxicité par réduction en NO₂ Méthémoglobinémie, nitrosamines cancérigènes.

2 points (1 + 0.5 + 0.5)

P1.3. C_{NO3-EF} . Q_{EF} + C_{NO3-ER} . Q_{ER} = C_{NO3-ET} . Q_T

67 QER = 50. QT

 $Q_{ER} = 50 \times 750 / 67 = 560 \text{ m}^3/\text{h}.$

 $Q_{EF} + Q_{ER} = Q_T = 750 \text{ m}^3.\text{h}^{-1}$ $Q_{EF} = 750 - 560 = 190 \text{ m}^3/\text{h}.$

CNH4+ EF . QEF + C NH4+ ER . QER = C NH4+ ET . QT

 $C_{NH4+ET} = 0.6 \times 190 / 750 = 0.152 \text{ mg/L}.$

2 points

> 0,1 mg/L = référence de qualité.

1 point

P2. La dénitratation par résine échangeuse d'ions (16 points)

P2.1. Pas de MES, pas de matières organiques ni oxydants pour éviter le colmatage et l'empoisonnement de la résine. 2 points

P2.2.
$$SO_4^{2^-} + 2 (CI^-, R^+) = 2 (CI^- + 2 (R^+), SO_4^{2^-} + CI^-, R^+ = CI^- + R^+, NO_3^- + CI^-, R^+ = CI^- + R^+, HCO_3^-$$

2 points (1 + 0.5 + 0.5)

P2.3. Bilan massique:

$$C_{NO_{1}} = \frac{240 \times 72 + 510 \times 3.6}{240 + 510} = 25,5 mg/L$$

Conforme

5 points

P2.4. $Q_{eau\ traitée} = 510\ m^3.h^{-1}$; capacité résine 1200 Eg.m⁻³ de résine;

72 mg NO₃ /L correspondent à 1,16 mEq/L soit 1,16 Eq/m³ soit 591,6 Eq/h, soit 14198/24 h.

Volume de résine = $14198 / 1200 = 11,85 \text{ m}^3$.

5 points

P2.5. Sulfates + nitrates + hydrogénocarbonates de sodium en excès. Eau trop minéralisée, pas de rejets dans l'environnement : traitements spécifiques ou rejet en réseau si convention de raccordement et traitabilité par une station d'épuration. 2 points (1 + 1)

BTS	MÉTIERS DE L'EAU
Corri	gé étude de cas - U. 6

Session 2013

P3. La dénitrification par biofiltration (14 points)

P3.1. En anoxie, développement d'un biofilm hétérotrophe assurant la 3 points (1 + 1 + 1) respiration des nitrates.

Ethanol source de C et d'énergie. H₃PO₄ source de Phosphore car eau carencée en C et P. 2 points (1 + 0,5 + 0,5)

P3.2. Équation: 50 moles éthanol pour 97 moles de NO₃ soit 50 x 46 g d'éthanol pour 97 x 62 g de NO₃⁻ soit (50 x 46) / (97 x 62) g d'éthanol pour 1 g de NO_3^- .

Flux de NO₃ éliminé = flux de NO₃ entrant – flux de NO₃ sortant $= 750 (72 - 25) = 750 \times 47 \text{ g NO}_3^{-}/\text{h}$

point

Flux d'éthanol = $(750 \times 40 \times 50 \times 46) / (97 \times 62)$ g éthanol / h $Q_{\text{\'ethanol}} = (750 \times 47 \times 50 \times 46) / (97 \times 62 \times 50)$ = 269.6 L/h.

1 point

Ratio DBO/P → besoin de 1 g de P pour 100g de DBO₅ consommée.

1 point

 DBO_5 éthanol = 104 / 1,4 = 74,3 g O_2 / L.

1 point

Flux de DBO₅ = $269.6 \times 104 / 1.4 = 20026 \text{ g}$ O₂

Flux de P = 20026/100 = 200.26 g P./h.

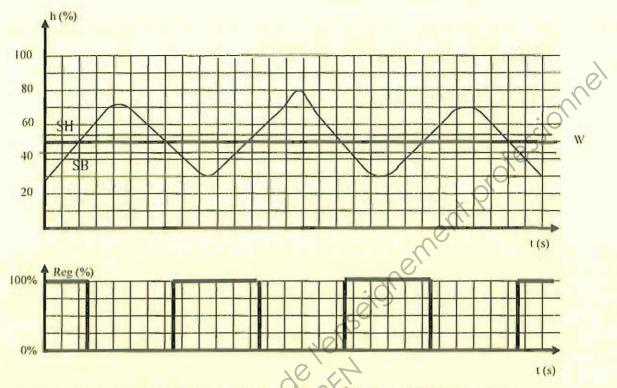
Flux de $H_3PO_4 = 269.6 \times 104 \times 98 / (1.4 \times 100 \times 31) = 632.97 \text{ g } H_3PO_4 / \text{h. 1 point}$

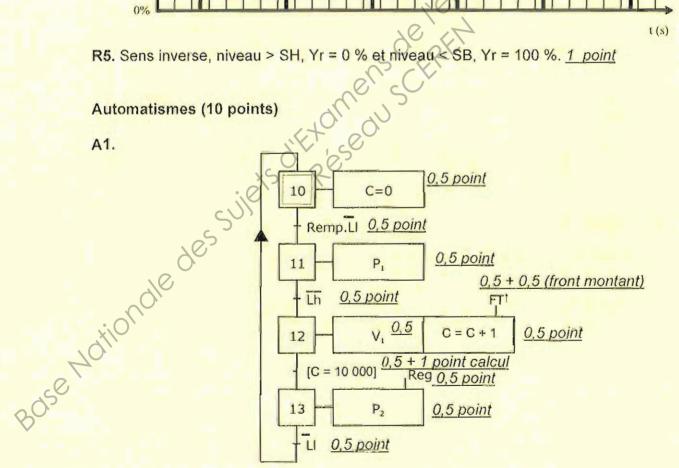
 $[H_3PO_4]_{injecté} = 1690 \times 0.85 / 400 = 3.59 g H_3PO_4 / h.$

1 point

 $Q_{H3PO4} = 632,97 / 3,59 = 176,31 L/h.$

1 point


Régulation (8,5 points)


R1. Régulation TOR la sortie Yr a deux états (Yr = 0 ou 100 %) alors qu'elle en a une infinité pour la régulation analogique. 1,5 points

R2. Pour I = 12 mA, le niveau est au milieu de l'échelle soit h = 15 + 2 = 17 m. 1 point

R3. Régulation TOR à deux seuils de + ou - 5 % de la pleine échelle centrée sur W = 50 % soit SB = 50 - 5 = 45 % 0.5 point et <math>SH = 50 + 5 = 55 %. 0.5 point 5 % de 4 m est égal à 20 cm donc en m SB = 16,8 m (ou 1,8 m) 1 point et SH = 17.2 m (ou 2.2 m). 1 point

BTS MÉTIERS DE L'EAU	Session 2013	
Corrigé étude de cas - U. 61	MTE6EDC	Page: 2/5

BTS MÉTIERS DE L'EAU	Session 2013	
Corrigé étude de cas - U. 61	MTE6EDC	Page : 3/5

(7 points)

- A2. Au choix : pression différentielle, ultrasons, radar, sondes capacitives, sondes conductives, plongeur... 2 points
- A3. Le capteur de niveau est NF afin d'assurer la sécurité anti-débordement de l'installation en cas de défaut d'alimentation. <u>1 point</u>

Électrotechnique (9,5 points)

E1. Puissance électrique absorbée par le moteur

Pabs = √3 U I cos φ = 1,732*400*76*0,9 = 47,4 Kw. 1,5 points (1 pour la formule + 0.5 AN)

- E2. Le rendement η = Pu/Pabs soit avec η = 92 % et Pabs = 47,4 kW; Pu = 44 kW. 1 point
- E3. Bobine alimentée en 230 V, utilisation couple standard et Pu = 44 kW; on a comme référence pour le disjoncteur NS100NMA100, pour le contacteur de puissance LC1D80P7, et pour le variateur ATV58HD54N4. 1 point par appareil soit 3 points
- E4. Dispositif A: bouton coup de point (arrêt d'urgence). 0,5 point
- E5. Dispositif B: pour le nom contact d'auto-maintien <u>0,5 point</u>, permet de maintenir la tension de 230 V aux bornes de KM1 (A1-A2) une fois que le bouton poussoir S1 est relâché. <u>1 point</u>
- E6. Le dispositif C s'ouvre en cas de défaut et fait relâcher KM1 (suppression de l'auto-maintien). 1 point
- E7. Un DDR permettra d'assurer la protection des personnes en cas de défaut d'isolement de l'installation. 1 point

Hydraulique (12 points)

H1. Relation de Bernoulli entre B₁ et R:

1 point

les pressions sont égales;

1 point

et les vitesses au niveau des plans d'eau sont nulles (niveau constant). 1 point

H2. Après simplification et factorisation de l'expression :

$$Z_{B_i} = Z_R + LCQ_i^2 + K \frac{u^2}{2g} = Z_R + LCQ_i^2 + K \frac{\left(\frac{4Q_i^2}{\pi D^2}\right)^2}{2g}$$
, on trouve l'expression souhaitée :
$$Q_i = \sqrt{\frac{Z_{B_i} - Z_R}{LC + \frac{8K}{\pi^2 q D^4}}}$$

BTS MÉTIERS DE L'EAU	Session 2013	
Corrigé étude de cas - U. 61	MTE6EDC	Page : 4/5

H3. K = 5.5 C = 61.86 L = 1 km, D = 0.500 m

$$Q_{s} = \sqrt{\frac{273.5 - 265.3}{61.86} + \frac{8 \times 5.5}{m^{2} \times 10 \times 0.5^{4}}} = 0.345 \text{ m}^{3}.s^{-1} \text{ soit } 29786 \text{ m}^{3}.j^{-1}$$

$$1. \text{ point}$$

$$H4. \text{ On reprend la formule précédente mais avec dans ce cas :}$$

$$Q_{s} = \frac{273.5 - 265.3}{\sqrt{61.86} + \frac{8 \times 0.07}{n^{2} \times 10 \times 0.5^{4}}} = 0.364 \text{ m}^{2}.s^{-1}$$

$$Q_{1} = 31434 \text{ m}^{3}.j^{-1}; \qquad 1. \text{ point}$$

$$\text{cela se révèle donc insuffisant, il manque } 13500 \text{ m}^{3} \text{ environ.}$$

$$H5. Q_{s} = 45000 - Q_{t} = 13566 \text{ m}^{3}.s^{-1}$$

$$\text{Bernoulli entre B}_{2} \text{ et R :}$$

$$Q_{s} = \sqrt{\frac{268.0 - 265.3}{3 \times 23.7}} = 0.195 \text{ m}^{2}.s^{-1}$$

$$\text{soit environ } 16837 \text{ m}^{3}.j^{-1}, \text{ ce qui se févèle suffisant.}$$

$$1. \text{ point}$$

$$Q_{1} = \sqrt{\frac{273,5 - 265,3}{61,86 + \frac{8 \times 0.07}{\pi^{2} \times 10 \times 0.5^{4}}}} = 0,364 \text{ m}^{3}.\text{s}^{-1}$$

$$Q_1 = 31434 \text{ m}^3.\text{j}^{-1}$$
;

H5.
$$Q_S = 45000 - Q_1 = 13566 \text{ m}^3.\text{s}^{-1}$$

$$Q_S = \sqrt{\frac{Z_{B_2} - Z_R}{LC}}$$

$$Q_S = \sqrt{\frac{268,0 - 265,3}{3 \times 23,7}} = 0,195 \text{ m}^3.5$$

BTS MÉTIERS DE L'EAU Session 2013 MTE6EDC Corrigé étude de cas - U. 61 Page : 5/5

Base Mationale des suiets difficience de l'ense de l'ens