

Ce document a été mis en ligne par l'organisme FormaV®

Toute reproduction, représentation ou diffusion, même partielle, sans autorisation préalable, est strictement interdite.

Pour en savoir plus sur nos formations disponibles, veuillez visiter : <u>www.formav.co/explorer</u>

BTS MÉTIERS DE L'EAU

ÉTUDE DE CAS – U. 61

SESSION 2014

Durée : 4 heures Coefficient: 4

Matériel autorisé :

- comprisition r - Toutes les calculatrices de poche y alphanumériques ou à écran graphique à condition que leur fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimante (Circulaire n°99-186, 16/11/1999).
- Ciseaux, colle et règle.

Tout autre matériel est interdit.

Documents à découper et coller sur la copie :

- document-réponse hydraulique n ^o 1	page 19/20
- document-réponse hydraulique n ²	page 20/20
X/O 1	
Ho Ho	
,50	
v	

Dès que le sujet vous est remis, assurez-vous qu'il est complet. Le sujet comporte 20 pages, numérotées de 1/20 à 20/20.

BTS MÉTIERS DE L'EAU		Session 2014
Étude de cas – U. 61	Code : MTE6EDC	Page : 1/20

Le sujet comprend trois parties. Rédiger chaque partie sur une copie différente. Le sujet comporte 17 annexes (pages 9 à 20/20).

1ère PARTIE : ÉTUDE DU PROCÉDÉ DE TRAITEMENT

(40 points) Durée indicative : 2 h

ÉTUDE DU DYSFONCTIONNEMENT DE LA FILIÈRE EAU ET ÉTUDE DE LA FILIÈRE BOUE D'UNE STATION D'ÉPURATION.

P1. Étude du dysfonctionnement de l'épuration biologique (12 points)

La station d'épuration étudiée (annexes 1 et 2, pages 9 et 10/20) est sujette depuis quelques mois à un phénomène de foisonnement.

- **P1.1.** Proposer deux tests ou analyses confirmant la mise en évidence du phénomène de foisonnement dans une station de traitement des eaux résiduaires urbaines par boues activées.
- P1.2. Calculer la charge massique de la station, en situation normale de fonctionnement (annexes 3 et 4, page 11/20). Conclure.
- P1.3. Calculer la valeur de l'indice de boue (IB) du bassin d'aération de cette station :
- en situation normale de fonctionnement (annexe 4);
- en situation de dysfonctionnement (annexe 5, page 11/20). Conclure.
- P1.4. À partir des annexes 6, 7 et 8 (pages 12 et 13/20), identifier la bactérie incriminée. Préciser la cause probable du phénomène de foisonnement observé.

P2. Étude de deux solutions de lutte contre le phénomène de foisonnement (18,5 points)

Une première solution de lutte par chloration est mise en place en octobre 2007.

- **P2.1.** Indiquer si ce traitement est curatif ou préventif. Justifier la réponse.
- P2.2. Calculer le flux journalier de dichlore injecté (kg Cl₂.j⁻¹) (annexe 9, page 13/20).

En considérant un flux de dichlore injecté de 200 kg Cl₂.j⁻¹.

- **P2.3. Calculer** la concentration en dichlore au point d'injection (g Cl₂.m⁻³). **Conclure** à l'aide de l'**annexe 9**.
- **P2.4. Calculer** le taux de traitement global en dichlore (g Cl₂.kg MS⁻¹.j⁻¹) au point d'injection. **Conclure** à l'aide de l'**annexe 9**.
- **P2.5.** Calculer la masse de MS recirculées en kg pour une période de 24 heures.

BTS MÉTIERS DE L'EAU		Session 2014
Étude de cas – U. 61	Code : MTE6EDC	Page : 2/20

- **P2.6.** En déduire le nombre de passage par jour de la boue au point d'injection. **Conclure** à l'aide de l'annexe 9.
- **P2.7. Citer** le paramètre d'exploitation suivi tout au long de la chloration pour déterminer le temps nécessaire à ce traitement.

Décrire l'évolution attendue de ce paramètre au cours d'un traitement d'une dizaine de jours de chloration.

Suite au traitement de chloration, qui a donné satisfaction mais qui représente un coup d'exploitation important (consommation en réactif), il a été décidé de construire en avril 2012 une zone de contact en amont du bassin d'aération.

P2.8. En se référant au graphique de l'annexe 10 (page 14/20), justifier la construction de cet ouvrage et expliquer en détail quel phénomène biologique on veut favoriser dans la zone de contact.

Le temps de contact « effluent / boues », dans la zone de contact, doit être d'environ de 10 minutes (dimensionné sur le débit de pointe + le débit de recirculation).

- P2.9. À partir des annexes 3 et 9, calculer le volume de la zone de contact (m³).
- **P2.10.** À partir du graphique fourni en **annexe 11 (page 14/20)**, représentant l'évolution de l'IB en fonction du temps, **déterminer** le temps nécessaire à l'exploitant pour faire disparaître le phénomène de foisonnement de sa station.

P3. Étude de la filière boues (9,5 points)

- **P3.1.** À partir des informations fournies en **annexe 2**, **expliquer** le rôle du chaulage des boues, dans l'épaississeur et avant stockage des boues déshydratées.
- P3.2. À partir des informations fournies en annexe 2, expliquer le rôle de l'ajout de polymères avant déshydratation par centrifugation.

Les retours en tête correspondent à l'eau récupérée suite à l'épaississement des boues et au traitement de déshydratation par centrifugation. Cette eau retourne en tête de station et rejoint l'eau brute.

P3.3. Calculer le volume journalier des retours en tête sur cette station $(m^3.j^{-1})$ à l'aide de l'annexe 12 (page 14/20).

Le taux de capture (TC) est un paramètre souvent calculé sur un appareil de déshydratation (ici la centrifugeuse) pour évaluer le rendement d'extraction des MS. Il se calcule à l'aide de la formule suivante :

TC (%) =
$$\left(\frac{[MS]_{Gateau} \times ([MS]_{Boue\ d'alim.} - [MS]_{Centrat})}{[MS]_{Boue\ d'alim.} \times ([MS]_{Gateau} - [MS]_{Centrat})}\right) \times 100$$

Pour que l'étape de centrifugation soit considérée comme efficace, le taux de capture doit être supérieur à 95 %.

P3.4. Sachant que la concentration en MS dans le centrat est de 0,8 g.L⁻¹, **calculer** le taux de capture de la centrifugeuse. **Conclure**.

BTS MÉTIERS DE L'EAU		Session 2014
Étude de cas – U. 61	Code : MTE6EDC	Page : 3/20

2^{ème} PARTIE : ÉLECTROTECHNIQUE – RÉGULATION – AUTOMATISME

(25 points) Durée indicative : 1 h 15

PARTIE ÉLECTROTECHNIQUE (9 points)

La station est alimentée par un réseau triphasé 3×400 V. La centrifugeuse, dont le fonctionnement est décrit en **annexe 2**, possède un moteur permettant l'entraînement du bol et un autre l'entraînement de la vis. Ces deux moteurs sont reliés à des variateurs de vitesse qui communiquent avec un automate industriel.

Ces éléments possèdent une inertie importante qui induit une durée de démarrage importante.

ÉTUDE DE LA COMMANDE DU MOTEUR DU BOL DE LA CENTRIFUGEUSE.

Le réseau possède les caractéristiques suivantes :

- tension nominale entre phases : 400 V ;
- fréquence : 50 Hz ;

Le moteur du bol possède les caractéristiques suivantes?

- moteur classe IE2;
- tensions : 230 V ∆ / 400 V Y ;
- $Pn = 22 \, kW$:
- vitesse nominale = 1470 tr.min⁻¹; $\ln = 40.2 \text{ A}$; $\cos \varphi = 0.85$; $\eta = 0.92$.
- **E.1.** Expliquer l'intérêt d'utiliser un variateur de vitesse dans le cas de la centrifugeuse.
- **E.2.** Calculer la puissance absorbée par le moteur du bol au fonctionnement nominal. Calculer son moment de couple nominal.
- E.3. Choisir et justifier le variateur adapté au moteur du bol (annexe 13, page 15/20).
- **E.4.** Choisir et justifier le couplage du moteur.
- **E.5.** La protection thermique est assurée par le variateur de vitesse. **Donner** sa valeur de réglage lth.
- **E.6.** Nommer et expliquer le rôle des appareils Q1 et KM1 du schéma (annexe 15, page 17/20).
- **E.7.** En fonctionnement nominal, **déterminer** la vitesse du moteur pour un réglage de la fréquence du variateur de 50 Hz puis de 16,66 Hz.
- E.8. Choisir l'appareil KM1 parmi ceux proposés en annexe 14 (page 16/20).

BTS MÉTIERS DE L'EAU		Session 2014
Étude de cas – U. 61	Code : MTE6EDC	Page : 4/20

PARTIE RÉGULATION (10 points)

On doit contrôler le débit Q2 de polymère liquide, de manière à influencer sur la siccité des boues. Pour ce faire, on asservit le débit Q2 de polymère liquide au débit Q1 de boue provenant de l'épaississeur, de telle sorte que : $Q2 = K \times Q1$.

Le schéma TI de cette régulation est fournie dans l'annexe 16 (page 18/20).

- **R.1.** Parmi les cinq types proposés ci-dessous, **indiquer** les deux seuls débitmètres capables de mesurer un débit de boue et utilisables à cet endroit de la station :

- R.2. Le capteur de débit de polymère mesure un débit allant de 0 à 1,5 m³.h .

 Cette mesure est ensuite codée en tension de 10 / + 10 volts.

 Indiquer la valeur, en L.h⁻¹, pour une tension de 7,5 volts.

 Indiquer la valeur, en volts, pour un débit de 0,810 m³ · -¹

 R.3. Indiquer les grands

Grandeur réglante : ?	\longrightarrow	RÉGULATION DE RAPPORT	Grandeur réglée : ?
-----------------------	-------------------	-----------------------	---------------------

R.4. Réaliser, sous forme d'un tableau comme proposé ci-dessous, la désignation de tous les éléments du schéma TI proposé en annexe 16.

Repère	Désignation
FE1/FE2	
FT1/FT2	is Ro
FY1	
K	
FIC	96

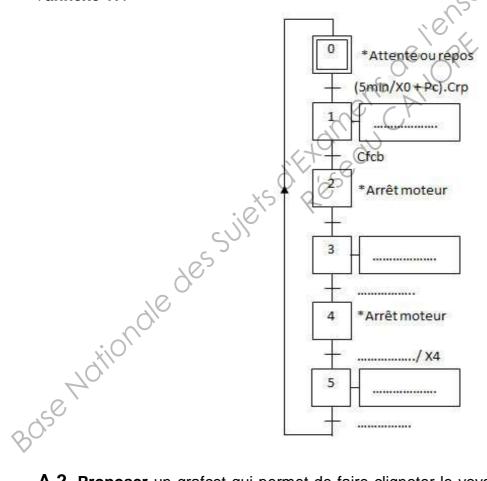
R.5. Lors de la phase de réglage de la régulation, le débit Q1 mesuré est de 12,5 m³.h⁻¹, le coefficient K est réglé à 4%.

Calculer le débit Q2 en L.h⁻¹ de polymère pour ce cas de figure.

PARTIE AUTOMATISME (6 points)

Le support d'étude est le dégrilleur automatique à déversement amont.

Son fonctionnement est présenté en annexe 17 (page 18/20).


① - ARRET-REPOS (ou fin de cycle) – Le râteau reste en attente, capteur Crp = 1 pendant le temps programmé (5 minutes).

BTS MÉTIERS DE L'EAU		Session 2014
Étude de cas – U. 61	Code : MTE6EDC	Page : 5/20

- ② DESCENTE À la fin de la temporisation de 5 minutes ou si le signal de perte de charge (Pc) passe à 1, on donne l'ordre de démarrage au moteur qui tourne alors dans le sens indiqué (KM1). Le râteau descend ouvert.
- 3 ARRET BAS Le râteau vient se poser au fond. Par gravité, le mobile change de position. Le câble se détend, libérant le palpeur qui sollicite le capteur fin de course bas (Cfcb). Celui-ci commande l'arrêt du moteur et l'activation d'une temporisation de 15 s.
- OFFITOYAGE DE LA GRILLE Après une temporisation (15 secondes), le moteur repart en sens inverse (KM2). Le câble se tend, le râteau se ferme, engageant ses dents entre les barreaux de manière mécanique et puis remonte.
- ⑤ MONTÉE Les déchets prélevés sont emprisonnés dans le râteau fermé.
- © DÉVERSEMENT Sur le schéma en **annexe 17**, le râteau pivote et se déporte au-dessus du réceptacle à déchets, pour vider son contenu. Dans notre cas, le râteau, en fin de course, rencontre un éjecteur mécanique qui va, vider les refus de grille vers un compacteur, le stopper et activer un contact fin de course haut (Cfch). Après 20 secondes, le râteau repart en position repos (Crp), dans l'attente d'un nouveau cycle.

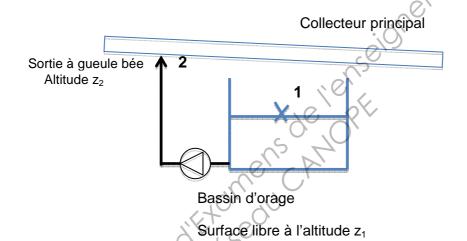
Pendant tous les déplacements, un voyant de sécurité clignote à une fréquence de 2 Hz.

A.1. À l'aide de la description ci-dessus et de l'annexe 17, recopier et compléter le grafcet d'un point de vue partie commande (utiliser les noms des entrées et sorties proposées dans l'annexe 17.

A.2. Proposer un grafcet qui permet de faire clignoter le voyant de sécurité, à une fréquence de 2 hertz, lors du déplacement du râteau. **Utiliser** le numéro 10 pour l'étape initiale.

BTS MÉTIERS DE L'EAU		Session 2014
Étude de cas – U. 61	Code : MTE6EDC	Page : 6/20

3ème PARTIE: HYDRAULIQUE


(15 points) Durée indicative : 45 minutes

ÉTUDES HYDRAULIQUES D'AVANT-PROJET DU BASSIN D'ORAGE EN AMONT DE LA STEP.

Le but d'un bassin d'orage est de réguler le flux transitant dans le réseau d'assainissement et arrivant à la STEP, par détournement automatique mais provisoire, par un déversoir, des flux intempestifs dus à des phénomènes pluvieux.

Le contenu du bassin d'orage est pompé et refoulé dans le collecteur principal lorsque l'orage a cessé.

Vue schématique de l'installation :

Formulaire partiel:

Formule de DARCY	$\Delta H = R \times Q^2 = \frac{8\lambda L}{g\pi^2 D^5} \times Q^2 \text{ou} \Delta H = \frac{\lambda L}{2gD} \times V^2$ $\Delta H : \text{perte de charge régulière en m}_{CE} : D, L, Q \text{ où V est en unité S.I.}$
Nombre de Reynolds	$\mathbf{Re} = \frac{V.D}{\nu} = \frac{4.Q}{(m.D.\nu)}$

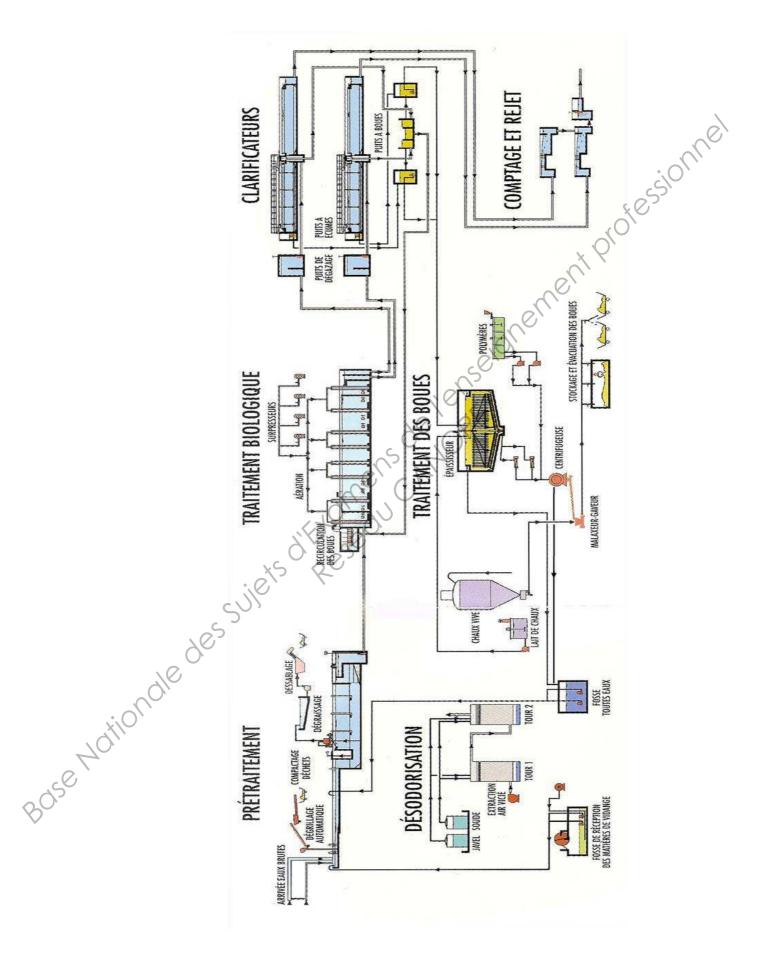
BTS MÉTIERS DE L'EAU		Session 2014
Étude de cas – U. 61	Code : MTE6EDC	Page : 7/20

Étude et choix de la pompe de refoulement. Pompage de 1 à 2.

Données:

- le débit désiré est $\mathbf{Q} = 400 \text{ m}^3 \cdot \text{h}^{-1}$ (pour $N_{\text{pompe}} = 1450 \text{ tr.min}^{-1}$);
- conduite de refoulement : **D** = 200 mm ;
- masse volumique de l'effluent : $\rho = 1020 \text{ kg.m}^{-3}$;
- accélération de la pesanteur : g = 9,81 m.s⁻²;
- la viscosité cinématique de l'eau est $v = 10^{-6} \, \text{m}^2 . \text{s}^{-1}$;
- la conduite de refoulement est en fonte de rugosité absolue **k = 1 mm** ;
- la longueur droite de conduite est **L = 30 m** ;
- l'ensemble des singularités (crépine, vanne, coudes) équivaut à une longueur droite de conduite $\mathbf{L}_{eSing} = \mathbf{6} \ \mathbf{m}$;
- altitude de la surface libre du bassin $z_1 = 84 m$;
- altitude de la sortie à gueule bée de la conduite de refoulement $z_2 = 89 m$.
- **H.1. Déterminer** l'expression littérale de la Hmt (m_{CE}) que doit fournir la pompe. On négligera le terme dû à l'énergie cinétique de l'eau en 1 et 2 dans l'application du théorème de Bernoulli.
- **H.2.** Déterminer le coefficient de pertes de charge linéaire λ de la conduite de refoulement de 1 à 2.

On utilisera l'abaque de Moody-Colebrook fourni.


(Découper et coller sur la copie le document-réponse hydraulique n°1 (page 19/20).

On prendra $\lambda = 0.03$ pour les questions suivantes.

- **H.3.** Calculer en utilisant la formule de Darcy la perte de charge totale $\Delta H_{1>2}$. En déduire que la Hmt est de 8,4 m_{CE}.
- H.4. Placer le point de fonctionnement calculé sur le document constructeur (page 20/20) et choisir le diamètre de roue qui convient. Justifier la réponse. (Découper et coller sur la copie le document-réponse hydraulique n°2 (page 20/20).
- **H.5. Tracer**, sur le même document, l'allure de la courbe de réseau de l'installation et **indiquer** alors les caractéristiques (Q_f, Hmt_f) du point de fonctionnement réel à 1450 tr.min⁻¹.
- **H.6.** Calculer la puissance hydraulique Ph de la pompe si le point de fonctionnement réel de l'installation donne $Qr = 425 \text{ m}^3.\text{h}^{-1}$ et $Hmtr = 8.8 \text{ m}_{CE}$.
- **H.7.** Évaluer, par une méthode au choix, la puissance utile (puissance mécanique) **P2** au point de fonctionnement.

BTS MÉTIERS DE L'EAU		Session 2014
Étude de cas – U. 61	Code : MTE6EDC	Page : 8/20

ANNEXE 1 - Synoptique de la filière de traitement

BTS MÉTIERS DE L'EAU		Session 2014
Étude de cas – U. 61	Code : MTE6EDC	Page : 9/20

ANNEXE 2 – Caractéristiques de la filière de traitement

- Dégrilleur (entrefer de 20 mm).
- Dessablage dégraissage.
- Chenal d'aération de 9 500 m³ équipé de 8 agitateurs et 672 diffuseurs fines bulles (centrale d'air (4 surpresseurs) 4 950 Nm³.h⁻¹).
- Dégazage.
- Clarification: 2 clarificateurs (1 clarificateur: 3 890 m³, Ø 39,8 m, surface au miroir 1 134 m²).
- Traitement des boues par :
 - chaulage avant épaississeur (lait de chaux) ;
 - épaississeur hersé (Ø 12 m, 400 m³); (siccité des boues soit 35 g $MS.L^{-1}$);
 - centrifugeuse (production 10 tonnes MS.j-1; siccité des boues déshydratées 20%, soit 200 g $MS.L^{-1}$);
 - chaulage avant stockage (chaux vive).
- ⇒ Les boues sont stabilisées par addition de chaux (stabilisation chimique) à 2 endroits sur la filière boues :
- avant épaississeur ;
- après déshydratation par centrifugation.
- ⇒ Les boues subissent une étape de **conditionnement chimique** par ajout de polymères juste avant la déshydratation par centrifugation.

Le conditionnement chimique permet d'éliminer l'eau libre et une partie de l'eau liée contenues dans la boue, par destruction de la stabilité colloïdale, afin d'en faciliter la déshydratation.

⇒ La centrifugation permet la séparation « eau / boue » dans un rotor cylindro-conique horizontal.

La boue à déshydrater, additionnée de polymères pour le conditionnement, est introduite dans la machine.

La séparation « eau / boue » est effectuée dans un rotor cylindro-conique horizontal, contenant une vis convoyeuse, qui tourne dans le même sens que le rotor mais à une vitesse légèrement supérieure (figure 1 ci-dessous). La différence de vitesse est appelée vitesse relative (VR).

Sous l'action de la force centrifuge, les solides se déposent en couche sur les parois (bol). La vitesse relative de la vis convoyeuse fait progresser les boues déshydratées (sédiment ou gâteau) vers la sortie de la machine, alors que le liquide extrait des boues (centrat ou filtrat) se collecte au centre de la machine pour être évacué. Bose Hotionale

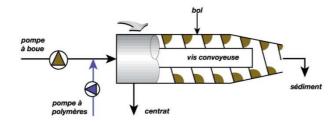


Figure 1 – Centrifugeuse

BTS MÉTIERS DE L'EAU		Session 2014
Étude de cas – U. 61	Code : MTE6EDC	Page : 10/20

ANNEXE 3 – Données caractéristiques de la station étudiée

Capacité de traitement	60 000 EH
Débit nominal	12 500 m ³ .j ⁻¹
Débit de pointe	1 560 m ³ .h ⁻¹
Charge nominale DBO ₅	3 275 kg.j ⁻¹
Charge nominale DCO	7 340 kg.j ⁻¹
Charge nominale MES	3 228 kg.j ⁻¹

ANNEXE 4 - Épuration biologique - situation normale

[MES] bassin d'aération	3,8 g,L
[MVS] bassin d'aération	2,9 g.L ⁻¹
V ₃₀ Dilution : 1/4	160 mL.L ⁻¹

ANNEXE 5 - Épuration biologique - situation de foisonnement

Depuis l'apparition du phénomène de foisonnement, la station est en surcharge hydraulique et en sous-charge organique.

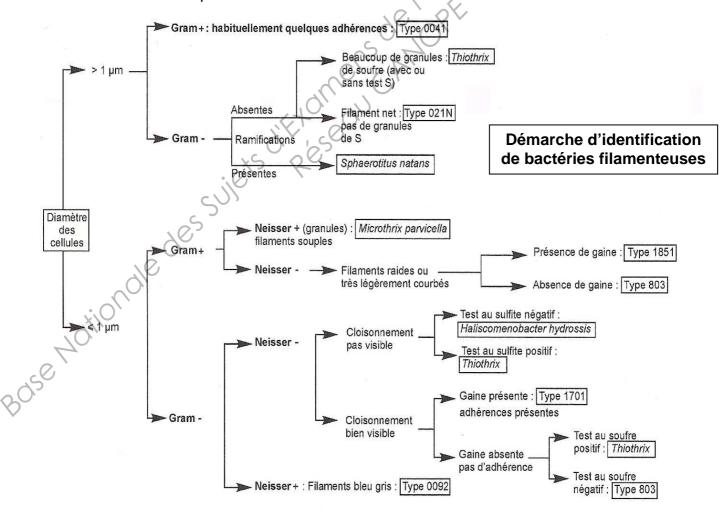
	[DBO₅] entrée bassin d'aération	260 mg.L ⁻¹
	[NGL] entrée bassin d'aération	8 mg.L ⁻¹
_([P ₁] entrée bassin d'aération	1,8 mg.L ⁻¹
76	[MES] bassin d'aération	4 g.L ⁻¹
10	[MVS] bassin d'aération	3 g.L ⁻¹
	V ₃₀ non dilué	980 mL.L ⁻¹
HO.	V ₃₀ Dilution : 1/5	630 mL.L ⁻¹
Bose Ho.		

BTS MÉTIERS DE L'EAU

Étude de cas – U. 61

Code : MTE6EDC

Session 2014


Page : 11/20

ANNEXE 6 - Observation microscopique de la boue activée en situation de foisonnement

rofessionnel ANNEXE 7 – Caractéristiques de la bactérie filamenteuse mise en évidence

- → Taille des filaments > 200 µm (« plat de spaghetti » : filaments souples, avec quelques boucles).
- \rightarrow Ø des cellules composant le filament : 0,6 à 0,8 µm.
- → Coloration de Neisser : positive.
- → Coloration de Gram : positive.

BTS MÉTIERS DE L'EAU		Session 2014
Étude de cas – U. 61	Code : MTE6EDC	Page : 12/20

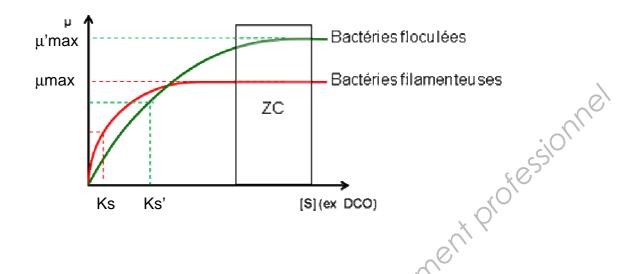
ANNEXE 8 – <u>Causes probables et bactéries filamenteuses responsables du</u> foisonnement

Type de station	Origine supposée du foisonnement	Facteur aggravant	Dominance du filament	Solution technique envisageable
Faible charge massique	 Carence nutrition- neile peu mar- quée Forte carence nutritionnelle (industries) 		 Type 0041, 0092, 0581, 0675 Microthrix parvicella Type 0961, 021N 	
Moyenne ou forte charge massique	Déséquilibres nutritionnels Variations de charge	Déficit en oxygène Substrat riche en hydrate de carbone	Sphaerotilus natens Type 021N, 1701, 1863	 Complèmentation en nutrients Suroxygénation des boues Extension de la station Mise en place d'un premier éta- ge à forte charge
• Indifférenciée	Composés soufrés réduits dans l'effluent	200	Type 021N Thiothrix, Beggiatoa	 Oxydation des composés soufrés en amont du trai- tement Suraération des boues
Industrielle (agro- alimentaire)	Substrat riche en hydrate de carbone Carence nutritionnelle et desé	Surchage ou sous-aération	 Sphaerotilus natans Type 021N, 1701, 1863 Type 0041, 0961, 021N 	 Lit bactérien en tête Suraération Complémentation en nutrients Zones de contact

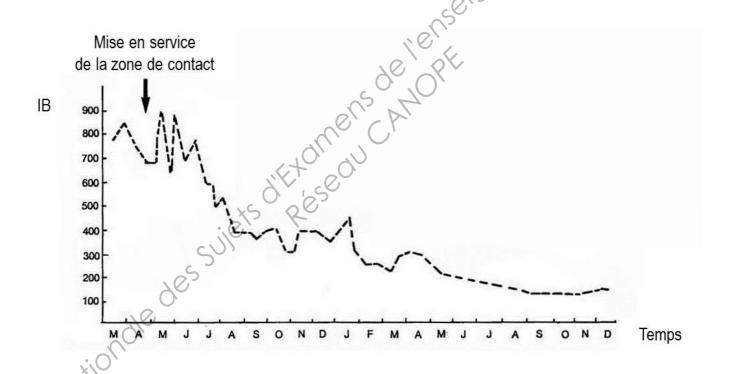
ANNEXE 9 - Lutte contre le phénomène de foisonnement par « chloration »

La chloration est effectuée par piquage sur la canalisation de recirculation des boues. Masse totale de MS à chlorer pour une période de 24 heures : 38 800 kg.

Chloration à la Javel (48°Chl.) sachant que 1°Chl . = 3,17 g $\text{Cl}_2.\text{L}^{-1}$.


Q_{Chloration}: 55 L.h⁻¹. Q_{Récirculation}: 900 m³.h⁻¹. [MS]_{Récirculées}: 5,4 g.L⁻¹.

Valeurs à respecter pour que le traitement soit optimal :


- concentration en chlore au point d'injection < 35 mg Cl₂.L⁻¹;
- taux de traitement global : 2 à 6 g Cl₂.kg MS⁻¹.j⁻¹ ;
- fréquence de passage de la boue au point d'injection : 2,5 à 3 fois.j⁻¹;
- durée de traitement : une dizaine de jours.

BTS MÉTIERS DE L'EAU		Session 2014
Étude de cas – U. 61	Code : MTE6EDC	Page: 13/20

ANNEXE 10 – Évolution du taux de croissance bactérien en fonction de la concentration en substrat

ANNEXE 11 – Solution de lutte contre le phénomène de foisonnement par « Zone de contact »

ANNEXE 12 – Filière de traitement des boues

10 tonnes de MS sont produites par jour en sortie de centrifugation.

BTS MÉTIERS DE L'EAU		Session 2014
Étude de cas – U. 61	Code : MTE6EDC	Page : 14/20

ANNEXE 13

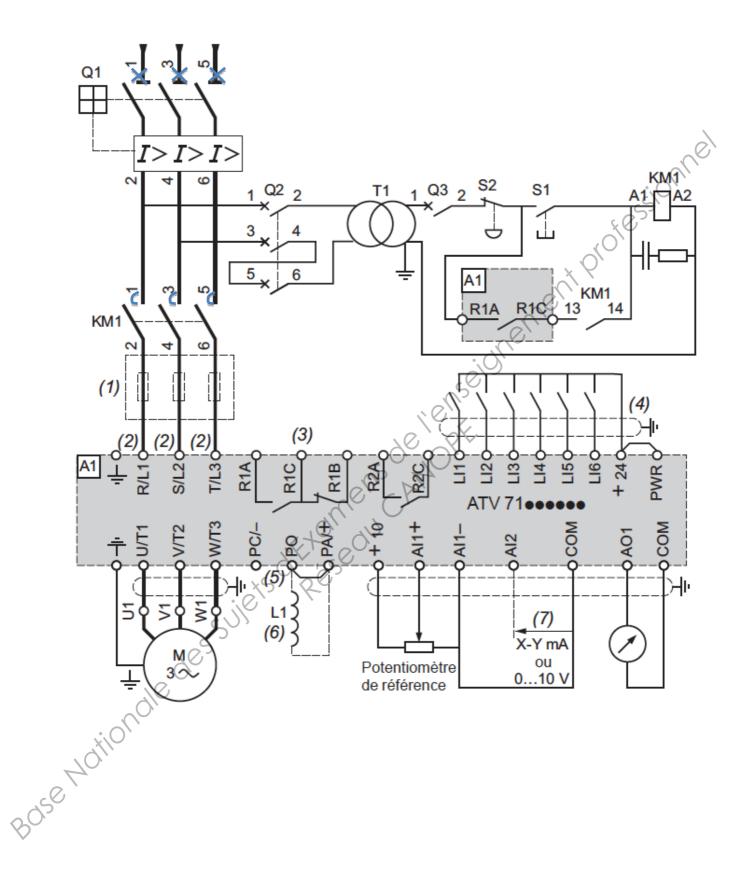
piaqu	sance uée sur ie (1)		au rant de e (2)		e lcc ligne e présumé maxi	-	ant	Couran transito pendan	ire maxi	Référence (3)	Mass
		300 1	/ 480 V	380 V	_	(1)	/ 460 V	60 s	2 s	-	
kW	HP	A	A 480 V	kVA	kA	A A	A A	A	A		, k
				hasée : 38				^	^		1/1/4
0,75	1	3,7	3	2,4	5	2,3	2.1	3,5	3,8	ATV 71H075N4 (4) (5)	3,0
1,5	2	5,8	5,3	3,8	5	4,1	3.4	6,2	6,8	ATV 71HU15N4 (4) (5)	3,0
2,2	3	8,2	7,1	5,4	5	5,8	4.8	8,7	9,6	ATV 71HU22N4 (4) (5)	3,0
_ <u>-,</u> 3	_	10,7	9	7	5	7,8	6.2	11,7	12,9	ATV 71HU30N4 (4) (5)	4,0
<u>-</u> 4	5	14,1	11,5	9,3	5	10,5	7.6	15,8	17,3	ATV 71HU40N4 (4) (5)	4,0
5,5	7,5	20,3	17	13,4	22	14,3	11	21,5	23,6	ATV 71HU55N4 (4) (5)	5,5
7,5	10	27	22,2	17,8	22	17,6	14	26,4	29	ATV-71HU75N4 (4) (5)	5,5
. ,. <u>. </u>	15	36,6	30	24,1	22	27,7	21	41,6	45,7	ATV 71HD11N4 (4) (5)	7,0
15	20	48	39	31,6	22	33	27	49,5	54,5	ATV 71HD15N4 (4) (5)	22,0
18,5	25	45,5	37,5	29,9	22	41	34	61,5	67,7	ATV 71HD18N4 (4) (5)	22,0
22	30	50	42	32,9	22	48	40	72	79,2	ATV 71HD22N4 (4) (5)	30,0
30	40	66	56	43,4	22	66	52	99	109	ATV 71HD30N4 (4) (5)	37,0
37	50	84	69	55,3	22	79	65	118,5	130	ATV 71HD37N4 (4) (5)	37,0
45	60	104	85	68,5	22	94	77	141	155	ATV 71HD45N4 (4) (5)	44,0
55	75	120	101	79	22	116	96	174	/191	ATV 71HD55N4 (4) (5)	44,0
75	100	167	137	109,9	22	160	124	240	264	ATV 71HD75N4 (4) (5)	44,0
90	125	166	134	109,3	35	179	179	269	295	ATV 71HD90N4 (6) (7)	60,0
110	150	202	163	133	35	215,	215	323	355	ATV 71HC11N4 (6) (7)	74,0
132	200	239	192	157,3	35	259	259	388	427	ATV 71HC13N4 (6) (7)	80,0
160	250	289	233	190,2	50 (314	314/	471	518	ATV 71HC16N4 (6) (7)	110,0
200	300	357	286	235	50	387	387	580	638	ATV 71HC20N4 (6) (7)	140,0
220	350	396	320	260,6	50	427	427	640	704	ATV 71HC25N4 (6) (7)	140,0
		444			4 7 7 2	//				(-) (-)	, -
	450	494			50					ATV 71HC28N4 (6) (7)	140,0
	500			X_	\sim			924			215,0
					*			1006			225,0
400	600	709	568	466.6						() ()	,
500	700	876	699 숙	576,6						ATV 71HC50N4 (6) (7)	300,0
250 280 315	400 450 500	444 494 555	357 396 444	292,2 325,1 365,3	50	481 550 616 671 759 941	481 550 616 671 759 941	721 825	793 907 1016 1107 1252 1552	ATV 71HC28N4 (6) (7) ATV 71HC31N4 (6) (7) ATV 71HC40N4 (6) (7) ATV 71HC50N4 (6) (7)	

BTS MÉTIERS DE L'EAU		Session 2014
Étude de cas – U. 61	Code : MTE6EDC	Page : 15/20

ANNEXE 14

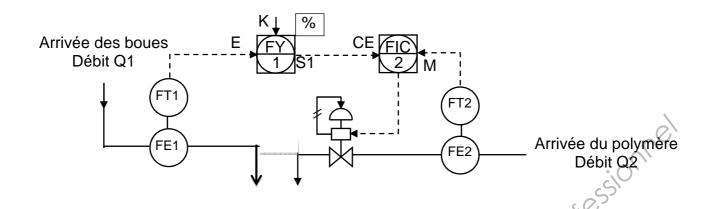
Puissa	r	Variateur	Disjoncteur			Contacteur de lig
	nce (1)	Référence	Référence (2)	Calibre	Irm	Référence (3) (4)
kW	HP			Α	Α	
Tensi	on d'alime	•	415 V 50/60 Hz. Coordi	nation type	e 2	
0,75	1	ATV 71H075N4	GV2 L08	4	-	LC1 D18 • •
1,5	2	ATV 71HU15N4	GV2 L10	6,3	-	LC1 D18 • •
2,2	3	ATV 71HU22N4	GV2 L14	10	-	LC1 D18 • •
3	-	ATV 71HU30N4	GV2 L16	14	-	LC1 D18••
4	5	ATV 71HU40N4	GV2 L16	14	-	LC1 D18•• _S
5,5	7,5	ATV 71HU55N4	GV2 L22	25	-	LC1 D25
7,5	10	ATV 71HU75N4	GV3 L32	32	-	LC1 D40
11	15	ATV 71HD11N4	GV3 L40	40	_	LC1 D4000
15	20	ATV 71HD15N4	GV3 L50	50	-	LC1 D50 ••
18,5	25	ATV 71HD18N4	GV3 L50	50	-	LC1 D50 ••
22	30	ATV 71HD22N4	GV3 L65	65	- (ĴLC1 D65●●
30	40	ATV 71HD30N4	NS80HMA80	80	480	LC1 D65●●
37	50	ATV 71HD37N4	NS100∙MA100	100	800	LC1 D80●●
45	60	ATV 71HD45N4	NS160∙MA150	ح 150	1350	LC1 D115
55	75	ATV 71HD55N4	NS160∙MA150	150	21350	LC1 D115
75	100	ATV 71HD75N4	NS250⊕MA220	220	1980	LC1 F185●●
90	125	ATV 71HD90N4	NS250⊕MA220	220	1980	LC1 F185●●
110	150	ATV 71HC11N4	NS250⊕MA220	220	1980	LC1 F185●●
132	200	ATV 71HC13N4	NS400⊕MA320	320/	1920	LC1 F265●●
160	250	ATV 71HC16N4	NS400⊕MA320	320	1920	LC1 F265●●
200	300	ATV 71HC20N4	NS400∙MA320	320	1920	LC1 F400●●
220	350	ATV 71HC25N4	NS630•MAE500	500	3000	LC1 F400●●
250	400	ATV 71HC25N4	NS630 MAE500	500	3000	LC1 F500●●
280	450	ATV 71HC28N4	NS630•MAE500	500	3000	LC1 F500●●
315	500	ATV 71HC31N4	NS630●MAE500	500	3000	LC1 F500●●
		ATV 71HC31N4	Ro			

BTS MÉTIERS DE L'EAU

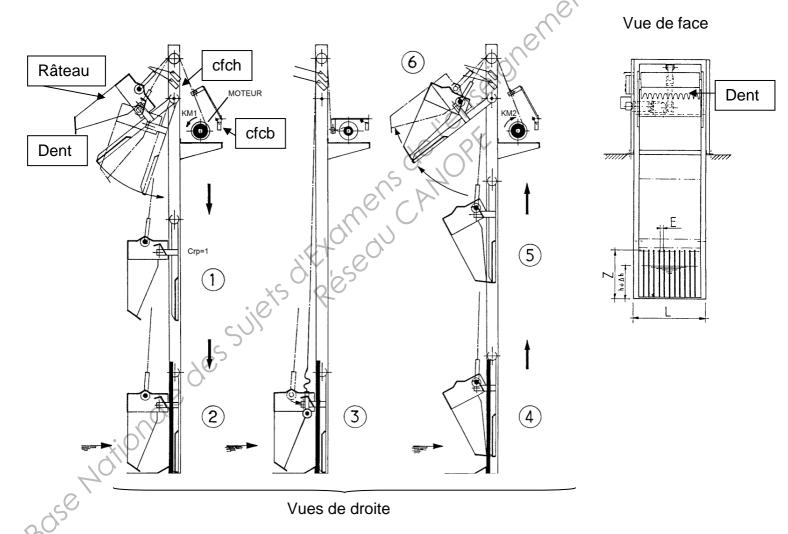

Étude de cas – U. 61

Code : MTE6EDC

Session 2014


Page : 16/20

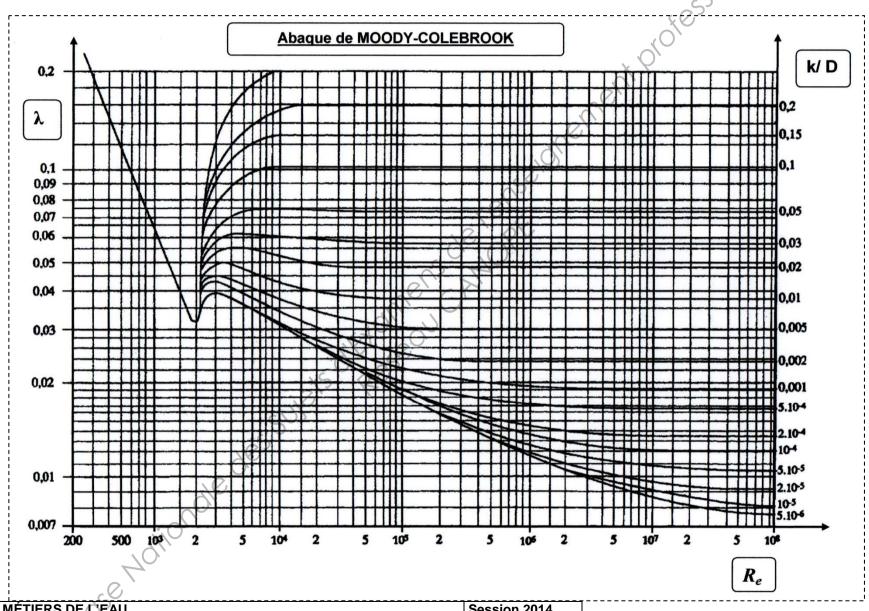
ANNEXE 15 - Exemple de schéma de câblage donné par le constructeur



BTS MÉTIERS DE L'EAU		Session 2014
Étude de cas – U. 61	Code : MTE6EDC	Page : 17/20

ANNEXE 16 - Schéma TI de la régulation

ANNEXE 17 – Schéma de principe d'un des dégrilleurs de la station



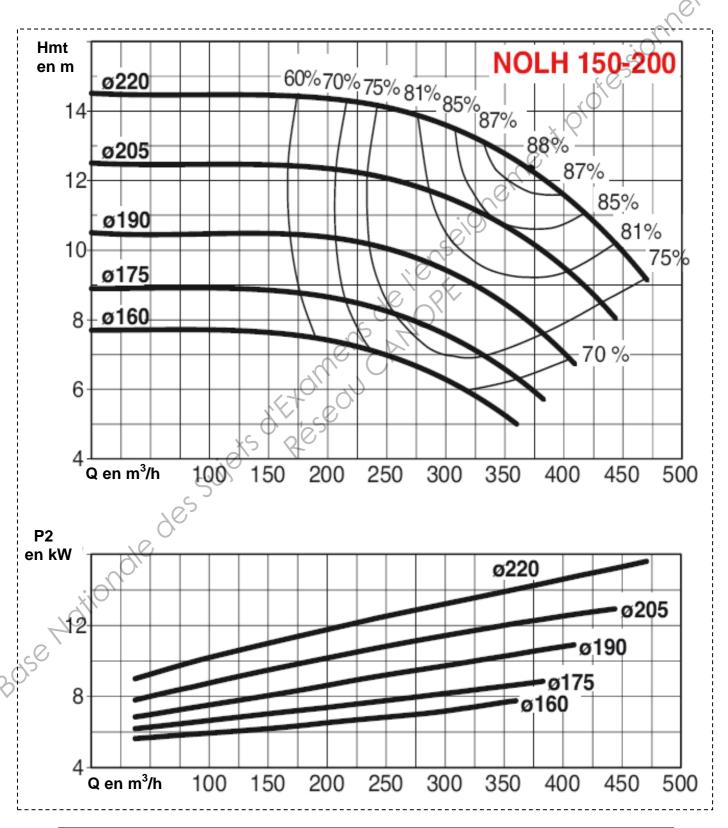
Codes des entrées et sorties utilisées :

<u>Entrées</u>		<u>Sorties</u>
Cfcb		KM1
Cfch	ALITOMATE	KM2
Crp	AUTOMATE	VOYANT
Pc		

BTS MÉTIERS DE L'EAU		Session 2014
Étude de cas – U. 61	Code: MTE6EDC	Page : 18/20

DOCUMENT-RÉPONSE HYDRAULIQUE N°1 (À découper et coller sur la copie)

BTS MÉTIERS DE L'EAUSession 2014Étude de cas – U. 61Code : MTE6EDCPage : 19/20


DOCUMENT-RÉPONSE HYDRAULIQUE Nº2 (À découper et coller sur la copie)

Document SALMSON constructeur

Courbes:

• Hmt = f(Q) et rendement pompe $\eta_P = f(Q)$;

• P2 = $P_{\text{Utile moteur}} = f(Q)$; pour 5 modèles à 1450 tr.min⁻¹.

BTS MÉTIERS DE L'EAU		Session 2014
Étude de cas – U. 61	Code: MTE6EDC	Page : 20/20